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CONCENTRATION DEPENDENT ACTIONS OF GLUCOCORTICOIDS ON
NEURONAL VIABILITY AND SURVIVAL
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� A growing body of evidence based on experimental data demonstrates that glucocor-
ticoids (GCs) can play a potent role in the survival and death of neurons. However, these
observations reflect paradoxical features of GCs, since these adrenal stress hormones are
heavily involved in both neurodegenerative and neuroprotective processes. The actual
level of GCs appears to have an essential impact in this bimodal action. In the present
short review we aim to show the importance of concentration dependent action of GCs on
neuronal cell viability and cell survival in the brain. Additionally, we will summarize the
possible GC-induced cellular mechanisms at different GC concentrations providing a
background for their effect on the fate of nerve cells in conditions that are a challenge to
their survival.
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INTRODUCTION

The glucocorticoids (GCs) secreted from the adrenal cortex (corti-
costerone in rodents and cortisol in primates including humans) exert a
wide range of actions on all cell types in mammals. Among these actions
GCs have an essential impact on the cells of the central nervous system as
they easily pass through the blood brain barrier and bind to intracellular
mineralocorticoid (MR) and glucocorticoid (GR) receptors in neurons
and glia (McEwen et al. 1968, Veldhuis et al. 1982, Van Eekelen et al.
1987, Fuxe et al. 1988, Reul et al. 1985, Pearce et al. 1989). In the central
nervous system, as classical feedback molecules, glucocorticoids maintain
the basal activity of the hypothalamo-pituitary-adrenal (HPA) axis and
facilitate the termination of stress-induced HPA activation (Dallman et al.
1987, Whitnall et al. 1993, Sapolsky et al. 1984). Importantly, GCs also
influence emotional (Cahill et al. 1995, Roozendaal 1999), and learning
and memory processes (Bohus et al. 1975, De Kloet 1999, Hui et al.
2004), and are involved in the coordination of such circadian events as
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the sleep-awake cycle and food intake (Bradbury 1998, Dallman 1995).
Beside these actions on behavioral brain functions GCs are also known to
have a critical impact on neuronal cell survival and viability in conditions
that challenge the fate of the nervous tissue e.g. during aging, and in neu-
rodegenerative disease conditions (Abraham et al. 2001, Yusim et al.
2000, Sapolsky 1996).

In the last decades clinical observations pointed out that elevated GC
concentrations and/or changes in the daily profile of GC release provide
a clinical background to the pathogenesis of endocrine and psychiatric
disorders [e.g. Cushing’s disease, depression, post-traumatic stress disor-
der (PTSD)] as well as neurodegenerative diseases like Alzheimer’s and
Parkinson’s disease (AD and PD) and cerebral ischemic stroke (Sapolsky
1996, Weiner et al. 1997, Hartmann et al. 1997, Smith et al. 2002). On the
other hand, a fine-tuned action of GCs is essential for neural develop-
ment and for the maintenance of neural integrity and function in adult-
hood, as these hormones exert neuroprotective roles in adult brain in a
certain concentration-window (Sloviter et al. 1989, Trejo et al, 1995,
Abraham et al. 1997, 2000). More recent experimental findings clearly
demonstrate that GCs are a major factor in new cell proliferation and
neurogenesis in the adult brain.

The concentration of GCs appears to be pivotal in their action on
cells. Importantly, most of the vertebrate corticosterone and/or stress
experiments on the central nervous system were performed on rodents
(especially on rats), although some work was also done on primates
(Sapolsky 1990, Sanchez et al. 2000). An overall conclusion from the lit-
erature is that the physiological plasma corticosterone concentration
range in rats is roughly between 20-50 nM, while elevated levels in rodents
from 100 nM and higher may be considered as ‘stress’ levels of this hor-
mone (Abraham et al. 1998, 2001). Excessive or overexposure of GCs
start at 200 nM concentrations or even higher. In the mechanisms of GC-
induced changes to the nervous tissue an obvious concentration-related
parameter is the duration of the GC exposure. While a transient elevation
of stress-induced corticosterone concentration may last at least 1 hour,
GC overexposure associated with pathogenic mechanisms can be defined
as the sustained high concentration of corticosterone lasting for at least
one week (Luine et al. 1994, Watanabe et al. 1992). To explore the effects
of corticosterone on the other end of the concentration scale in experi-
ments with rodents, bilateral adrenalectomy (ADX) can be a useful in
vivo method to observe and study neurodegenerative processes in ani-
mals with a total lack of corticosterone. 

In the present communication we will shortly review the strikingly
potent role of different GC concentrations in the GC-induced bimodal
type of action on neuronal cell survival and viability. In addition, the pos-
sible underlying mechanism of action will be discussed. 
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1. EFFECT OF DIFFERENT CONCENTRATIONS OF GCS 
ON NEURONAL CELL VIABILITY

The effects of adrenalectomy on the hippocampus in rodents can
now be regarded as classical data, where ADX results in the loss of gran-
ule cells of the dentate gyrus (DG), by way of detrimental mechanisms
resembling cellular hallmarks of neuronal apoptosis (Sloviter 1989,
1993). In some experiments, however, where a lack of DG cell pathology
was observed after ADX, this effect could be explained by the existence
of extra-adrenal ectopic tissue or incomplete adrenalectomy secreting
detectable amounts of GCs (Jaarsma et al. 1992, Sloviter 1993). These
findings at least demonstrated the difference between a very low GC level
and a total absence of GC in neuronal survival and addresses the role of
GC in the very low concentration range. 

On the other hand, stress level or overexposure of GCs, similarly to
the ADX-induced effect -, may cause neurodegenerative changes in the
central nervous system which shows the “whip-saw”- nature of action of
GCs on neuronal cell survival. Experiments conducted in various labora-
tories indicated that a 12-hour/day overexposure to corticosterone for 3
months resulted in a ~20% loss of hippocampal neurons (Sapolsky 1985,
Arbel et al. 1994, Clark et al. 1995). Interestingly, these GC-induced exac-
erbations do not show any apoptotic features appearing in in vitro inves-
tigations in hippocampal tissue cultures (Roy and Sapolsky 2003).
However, others failed to show significant loss of neurons in tree shrews
after applying similar high doses of corticosterone, which suggests that a
possible strain and species dependency exists in GC-induced neurode-
generation (Vollmann-Holsdorf et al. 1999).

It is worth noting the neuroanatomical consequence of these data, as
the hippocampus appears to be the most affected forebrain area where
lack of - or direct exposure to elevated concentrations of GCs induces the
most outspoken neurodegenerative processes (Arbel et al. 1994, Clark et
al. 1995, Dachir et al. 1993). In fact, the hippocampus is the principal
extrahypothalamic target of GCs that abundantly expresses both GR and
MRs (Veldhuis et al. 1982, Van Eekelen et al. 1987, Fuxe et al. 1988, Reul
et al. 1985). However, not the entire hippocampal formation is sensitive
to GC overexposure. Pharmacological data demonstrate that high con-
centrations of GCs are predominantly toxic to pyramidal cells in the CA3
region of the hippocampus (Hibberd et al. 2000, Landfield et al. 1994,
Kerr et al. 1994), while damage to CA1 pyramidal cells was less frequent-
ly demonstrated (Levy et al. 1994). The reason of this region selectivity is
not known, but it is tempting to speculate that CA3 degeneration is a sec-
ondary process and results indirectly from GC-induced changes in the
functioning and signaling of granule cells terminating on apical den-
drites of CA3 pyramidal cells (Patchev 1999). In contrast to the effects of
high or low GC concentration, physiological or only slightly elevated GC
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levels fail to have any deleterious effect on neuronal cell viability in any
animal model investigated so far (Abraham et al. 2001). 

Last but not least, the direct GC-induced neuroprotective/neurode-
generative action and their concentration dependence, has potentially
major consequences for the human brain. In general terms, exogenous
administration of GCs is an effective strategy in clinics to suppress inflam-
matory reactions in neurological disorders like multiple sclerosis, trau-
matic brain injury and spinal cord injury. However, the concentration of
GCs and the duration of treatment is a critical factor in the clinical prac-
tice as well. Regarding the ADX-induced neuronal loss, although a rare
condition in humans, there is some human relevance for such effects
since a case report indicated selective loss of granule cells in a female
patient with adrenocortical deficiency syndrome (Maehlen et al. 1990). It
is well known that the physiological or a temporarily elevated GC con-
centration is more likely to be beneficial than harmful in humans and at
those concentrations GCs preserve the physiological metabolism of the
neurons and regulate the normal activity of the HPA axis. However,
recent pharmacological evidence indicates that chronic administration of
the GR agonist dexamethasone - as part of the anti-inflammatory therapy
for rheumatoid arthritis - leads to widespread neuronal atrophy in the
brain (Benston et al. 1978, Hoogervorst 2002). Similarly, results of clini-
cal studies lend support to the notion that overexposure of the endoge-
nous plasma corticosterone levels may be regarded as a major risk factor
for neurodegenerative disorders in the human brain in particular when
present or applied in combination with other jeopardizing conditions
(Sapolsky 1996). This notion is further supported by the observation that
patients with AD and PD exhibit significantly higher total plasma cortisol
concentrations, whereas the diurnal variation of cortisol secretion did not
differ from healthy controls (Hartmann et al. 1997, Weiner et al. 1997).
Moreover, a significant correlation between increased plasma cortisol lev-
els and the degree of mental deterioration and decreased volume of the
hippocampus was demonstrated in AD patients (De Leon et al. 1988).
Based on clinical and experimental investigations, a working hypothesis
suggests that a high GC concentration might be a key factor in the loss of
dopaminergic neurons that underlies PD (Smith et al. 2002). In
endocrinological disorders such as Cushing’s syndrome it is the high plas-
ma cortisol concentration that may deteriorate the function and struc-
ture of the central nervous system. In fact, clinical studies demonstrated
a reduced volume of the hippocampus and impaired cognitive function
correlating with an increase in plasma cortisol levels in patients with
Cushing’s syndrome (Starkman 1992, 2003). It is worth noting that the
normalization of cortisol levels in Cushing’s disease decreases the hip-
pocampal atrophy indicating a partly reversible effect of high cortisol in
neuronal integrity (Starkman 1999). In addition, there is evidence that
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supports high GC concentrations as a predisposition factor in the patho-
genesis of psychiatric affective disorders, such as major depression and
PTSD. The impaired function of the hippocampus appears to play a piv-
otal role in the manifestation of major depression (Lee et al. 2002). Since
the cortisol level is elevated in patients with major depression, it is tempt-
ing to speculate that the threat to hippocampal neurones by high cortisol
might lead or add to the manifestation of the disease. This working
hypothesis is supported by a clinical study where the hippocampal vol-
ume in individuals with major depression exhibited pronounced negative
correlation with the plasma concentration of cortisol (Sheline 1996). It
should be noted, however, that the rather minimal cell loss in the hip-
pocampus does not have a predominant role in this reduction of hip-
pocampal volume (Gurvits et al. 1996, Lucassen 2001) and that hip-
pocampal volume reduction should be attributed to tissue shrinkage and
probably dendritic atrophy. In this respect it is noteworthy that some
patients with major depression showed a strong astrocytic reaction and
enhanced synaptic reorganization in the hippocampus (Muller et al.
2001). Interestingly, patients with PTSD also exhibit a reduced volume of
the hippocampus even without cortisol hypersecretion (Gurvits et al.
1995, Bremner et al. 1995). This fact clearly indicates episodic stress
and/or temporary hypersecretion of cortisol, which might elicit irre-
versible changes in susceptible brain structures and potentially lead to
the subsequent manifestation of PTSD. 

Summarizing these facts, an obvious conclusion that can be drawn
based on literature reports is that the concentration of GCs is a critical
factor in the neuronal viability. Both lack and overexposure or prolonged
administration of GCs increases the possibility of neurodegenerative
processes. In contrast, the physiological or slightly elevated concentration
of GCs preserves the integrity of neuronal cells. 

2. IMPACT OF DIFFERENT GC CONCENTRATIONS ON 
NEURONAL CELL SURVIVAL AT DIFFERENT NOXIOUS STIMULI

Besides the direct action of different concentrations of GCs on neu-
ronal cellular vitality and survival, variations in GC concentrations effec-
tively alter the neuronal responses under noxious conditions as well. 

ADX enhances the vulnerability of neurons to excitotoxic insults
which is the case in ischemic stroke and Alzheimer’s disease, but proba-
bly to other well known neurodegenerative disorders as well. In this
regard, recent studies in the authors’ laboratories demonstrated that
ADX and very low corticosterone concentrations significantly potentiated
β-amyloid (Aβ)- and N-methyl-D-aspartate (NMDA)-induced excitotoxici-
ty to cholinergic neurons of the rat magnocellular nucleus basalis
(Abraham et al. 2000). 
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Similar to ADX, the overexposure of GCs can endanger neurons
again via enhancing their vulnerability of nerve cells to neurotoxic insults
(Sapolsky and Pulsinelli 1985). In this regard, stress levels of corticos-
terone were demonstrated to increase neuronal damage in the hip-
pocampus following acute hypoxia/ischemia in both rats and gerbils, as
well as to aggravate the effect of hypoglycemia in hippocampal tissue
explants (Kide et al 1986, Morse et al. 1990, Yusim et al. 2000). Moreover,
stress levels of corticosterone contribute to the augmentation of neuronal
loss induced by a variety of neurotoxins, like NMDA, Aβ (Abraham et al.
2000), kainic acid (Sapolsky 1986), 3-acetylpiridine (Sapolsky et al. 1985),
and ethylcholine aziridinium (Hortnagl et al. 1993, Amoroso et al. 1993).
Interestingly, in some cases the deleterious effect of GCs can be out-
weighed by certain metabolic conditions, leading to neuroprotection.
Accordingly, despite sustained elevated corticosterone concentrations,
caloric restriction decreases the risk of GC-induced neurodegeneration
and increases the resistance of neurons to toxins and injury (Patel and
Finch, 2002).

On the other hand, corticosterone itself has neuroprotective poten-
tial against excitotoxic insults at slightly elevated concentrations.
Corticosterone concentrations ranging from 20-270 nM in blood plasma
profoundly attenuate both NMDA and Aβ toxicity on cholinergic neu-
rons of the rat magnocellular nucleus basalis (Abraham et al. 2001). In
addition the slightly elevated and stress levels of GCs as most powerful
immunosupressors play a major role in protecting the brain against
immunochallenge such as exposure to bacterial cell wall components
(Nadeau and Rivest 2003).

Taken together, similar to the GC-induced action on neuronal viabili-
ty corticosterone has a bi-directional effect on neuronal survival as indi-
cated by various studies including our own experimental observations.
This bidirectional effect becomes apparent in the U-shaped profile of a
dose-response relationship between plasma corticosterone concentration
and the extent of damage to cholinergic basal forebrain neurons
(Abraham et al. 2001). Whereas ADX (eventual loss of serum corticos-
terone), and highly elevated corticosterone concentrations (310-650 nM)
potentiate both NMDA- and Aβ-triggered excitotoxicity, moderate levels of
plasma corticosterone in a narrow concentration window exert significant
protection against excitotoxic neuronal damage (Abraham et al, 2001).

3. THE IMPACT OF DEVELOPMENT AND AGEING IN GC-INDUCED 
NEURODEGENERATIVE/NEUROPROTECTIVE ACTION AT DIFFERENT 
GC CONCENTRATIONS 

During the perinatal period, a constant basal level of GCs is essential
for normal development of the CNS (Gould et al. 1997). Accordingly,
birth and death of granular cells of the dentate gyrus appears to be reg-
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ulated by GCs. Their pivotal role during development is further support-
ed by experimental studies reporting protective effects of dexamethasone
in a neonatal model of hypoxic-ischemic brain injury (Tuor et al. 1993,
1995). Also considering the fact that lack of corticosterone induced apop-
tosis in dentate gyrus, Sloviter and colleagues postulated that GCs are
protective ‘obligatory growth factors’ for hippocampal granule cells (Sloviter
et al. 1993). It is worth noting, however, that long lasting neonatal over-
exposure of GR by dexamethasone induces serious deficits in synaptic
plasticity and spatial learning in adulthood (Kamphuis et al. 2003). These
experimental results further suggest that the fine-tuned concentration
windows of GCs are important in the GC-induced effect on neuronal cell
survival during development as well. 

In contrast to the enhanced survival potential of neonatal neurons,
aging of the brain is associated with the reduced ability of neurons to sta-
bilize their ion (notably the maintenance of Ca2+) homeostasis, and with
enlarged ACTH and corticosterone responses to stress, which lead to the
enhancement of GC-induced neurodegeneration of nerve cells. Early
studies of Landfield and colleagues demonstrated that adrenal hypertro-
phy and subsequent prolonged hypersecretion of corticosterone positive-
ly correlate with increased neuronal damage and appearance of reactive
astroglia in the hippocampus during aging (Landfield et al. 1978).
Additionally, elevated basal corticosterone levels accelerated hippocam-
pal neuronal damage in aging (Issa et al. 1990). Pharmacological studies
demonstrated that antagonism of GR with RU486 significantly attenuated
the age-related hippocampal damage (Talmi et al. 1996), while aging
exacerbates the dexamethasone-induced apoptosis in the DG (Hassan et
al. 1996). Moreover, a continuously elevated amount of corticosterone
delivered by means of foot-shocks for 6 months significantly increased
hippocampal aging (Kerr et al. 1991).

Taken the above data together ageing slightly modifies the bimodal
role of GCs on neuronal cell viability and survival. While GCs are essen-
tial to neuronal development, aging increases the neurodegenerative
potential of high GC concentrations. 

4. POSSIBLE MECHANISMS AT DIFFERENT GC CONCENTRATIONS
UNDERLYING THE BIMODAL ACTION OF GCS UPON NEURONAL 
CELL SURVIVAL AND VIABILITY

In general terms, GCs may have an offensive or a defensive action on
neurons leading to consequent neuroprotective or neurodegenerative
process. In this paragraph of this review, we aim to shed some light on the
mechanisms underlying this bimodal action and the role of different GC
concentrations in these mechanisms.

Before starting to discuss the possible mechanisms, we should men-
tion the critical role of distinct classes of corticosteroid receptors in
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determining the cellular outcome of GC action on neuronal cell physi-
ology and maintenance of its integrity. Importantly, the MR and GR have
a different binding affinity to corticosterone. Binding studies indicate
that MR associates with corticosterone with high affinity while GR has a
10-fold lower affinity for corticosterone (De Kloet et al. 1998). Basal cor-
ticosterone concentrations saturate the MR binding capacity and GR can
be activated in addition to MR when corticosterone levels are high (Reul
and De Kloet 1985). Deleterious effects of GCs are mediated by low-affin-
ity GR, which is also evidenced by the pharmacological observation
where synthetic GR agonists [e.g. methylprednisolone (Hall et al. 1985,
Uhler et al. 1994) and dexamethasone (Koide et al. 1986)] share the
ability to cause significant neurodegeneration, whereas non-GR ligands
do not have neurodegenerative potential in the brain (Goodman et al.
1996, Packan et al. 1990). These facts are further supported by experi-
ments on Purkinje cells, where the administration of GR antagonist
RU486 can effectively protect these cells form apoptotic processes in the
cerebellum (Ghoumari et al. 2003). It is worth noting that this effect may
be mediated via novel mechanisms and/or unknown variant(s) of GR.
Moreover, GR-mediated neuronal loss can be effectively abrogated by
the simultaneous activation of the MR, suggesting that MRs mediate neu-
roprotective effects of GCs (Sousa at al. 1999). Almeida et al. (2000) pro-
vided further indication on the critical role of MR/GR balance in neu-
ronal survival. In fact, stimulation of GR was shown to lead to neuronal
apoptosis by significantly increased expression of the pro-apoptotic mol-
ecule Bax, relative to that of the anti-apoptotic molecules Bcl-2, or Bcl-
X, whereas opposite, neuroprotective effects were observed following
stimulation of MR. Thus the balance of MR/GR in neuronal survival and
viability appears to be essential. However, in spite of the concordant
experimental data in rodents, studies on primates do not support these
findings. Indeed, neuroanatomical investigation reveals a very low level
of GRs in the primate hippocampus (Sanchez et al. 2000). These data
also suggest that GCs effect is predominantly mediated via MRs in the
primate hippocampus. 

The metabolic conditions such as the bioavailability of glucose have a
pivotal impact on the maintenance of the integrity of neuronal cells. GCs
as catabolic hormones can block the uptake and/or the metabolism of
glucose and as such threaten fundamental physiological neuronal func-
tions. Besides the GC-induced blockade of transendothelial glucose trans-
port in the brain, GCs have a potential inhibition on glucose uptake in
neurons and glia as revealed in the hippocampus (Sapolsky 1996, Doyle
1993). This GC-induced disruption in neuronal glucose utilization and
consequent energetic failure in neurons might explain the lack of ener-
gy-dependent apoptotic processes following GC overexposure (Roy and
Sapolsky 2003). On the other hand, this GC-induced metabolic challenge
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is in itself probably insufficient to directly kill the neurones. However, it
may effectively contribute to the effect of the high level of GCs on the
neuronal cell survival following excitotoxic injury which imposes high
demands on available energy in the nerve cells. In contrast, the conse-
quent high corticosterone level following caloric restriction failed to have
any deleterious effect on neurons (Patel and Finch 2002). Caloric restric-
tion itself has a neuroprotective effect due to combinations of different
mechanisms. In fact, caloric restriction increases the expression of HSP70
and neutrophic factors (e.g. BDNF, NGF) promoting the neuronal sur-
vival and plasticity (Patel and Finch 2002). In addition, caloric restriction
attenuates the oxidative damage and ROS generation and decreases the
glial reaction. According to one hypothesis, these protective effects of
caloric restriction simply outweigh the deleterious effect of GCs in the
brain (Patel and Finch 2002).

Generally, GABA exerts an inhibitory activity in the brain and thus
can be regarded as an intrinsic neuroprotective factor against excitotoxic
brain damage. High concentrations of GCs may deteriorate GABAergic
neurotransmission in the brain, as they significantly reduce the efficacy of
GABAergic signalling by decreasing the binding of GABA, neurosteroids
and benzodiazepines to GABA receptors (Acuna et al. 1990; Zeise et al.
1992). In fact, electrophysiological measurements on brain slices support
the above findings, as the high GC concentrations highly attenuate the
generation of GABAA receptor-mediated inhibitory post-synaptic poten-
tials (Joels and De Kloet 1993). It has been postulated that GC-induced
impairment of GABAergic neurotransmission is probably due to changes
in GABA receptor mechanism rather than the GABA release itself. In fact,
microdialysis studies in freely moving rats failed to show significant effects
of intracerebral GC administration on extracellular GABA concentra-
tions (Abraham et al. 1996; Venero and Borell 1999), suggesting a pre-
dominant role of GABA receptors in these mechanisms.

Besides GABA, the other GC-sensitive essential neurotransmitters are
the excitatory amino acids (EAA) including glutamate and aspartate.
During the past decade an impressive body of evidence emerged on the
critical role of GCs in modulating glutamate metabolism and glutamater-
gic neurotransmission in the brain (Mohaddam 1993, 1994). Importantly,
glutamate binds to metabotropic and ionotropic glutamate receptors
(e.g. NMDA and AMPA receptors) in the brain. At physiological condi-
tions, the glutamate-induced Ca2+ mobilization via NMDA receptors leads
to the enhancement of synaptic communication in both pre- and post-
synaptic elements, and to the formation of highly active perforated synap-
tic contacts (Edwards 1995). Under pathological conditions, however,
excessive glutamate release induces an uncontrolled rise in the intracel-
lular Ca2+ concentration in neurons (Szatkowski and Attwell 1994;
Schousboe et al. 1997). Accordingly, this circumstance may evoke mito-
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chondrial dysfunction, increase in the formation of reactive oxygen inter-
mediates and activation of Ca2+-dependent proteases, NO synthase, lipas-
es and nucleases, leading to neuronal damage (Dugan and Choi 1994).
Results of both in vitro investigations on cell culture and in vivo micro-
dialysis studies showed that high GC concentrations might enhance the
neuronal cell vulnerability via excessive glutamate-induced excitoxicity
(Abraham et al. 1996; Moghaddam 1993; Stein-Behrens et al. 1994;
Semba et al. 1995). Indeed, these experiments clearly demonstrated that
overexposure of GCs induces an extracellular glutamate increase in the
brain in which the GC-induced inhibition of astrocytic glutamate uptake
plays a critical role (Virgin et al. 1992). 

Besides the indirect effect of GCs on intraneuronal Ca2+ concentra-
tions via enhanced glutamate increase, chronic absence as well as high
concentrations of corticosterone may directly modulate Ca2+ currents in
nerve cells. In fact, within three days following ADX the amplitude of volt-
age-dependent Ca2+ currents significantly increases (Karst et al. 1994),
concomitant with a relatively small Ca2+-dependent K+ conductance in
hippocampal neurons (Kerr et al. 1989). Chronic exposure to high corti-
costerone concentrations affects the Ca2+ conductance of neuronal mem-
branes in a similar fashion (Karst et al. 1994). Importantly, a single cell
Ca2+ imaging study revealed that high corticosterone levels enhance the
NMDA receptor mediated intraneuronal Ca2+ elevation in the hippocam-
pus (Takahashi et al. 2002). These events become even more deleterious
if the age-related elevation of basal GC concentrations is considered
(Kerr et al. 1989; Thibault et al. 1996). Molecular biological data further
support the direct effects of GCs on Ca2+ currents, as high GC concen-
trations increased the neuronal mRNA content of Ca2+ channel subunits
in ADX rats, whereas chronic supply with corticosterone in the physio-
logical range reduced Ca2+ channel subunit mRNA expression (Nair et al.
1998). Additionally, high concentrations of GCs repress the expression of
plasma membrane Ca2+ pump isoform 1 mRNA in several brain regions,
thereby providing a unique way to reduce Ca2+ extrusion from nerve cells
(Bhargava et al. 2000). Landfield and his colleagues (1992) postulated
that excessive activation of GR and dysregulation of the intracellular Ca2+

homeostasis might be two distinct phases of a single process that signifi-
cantly increases the susceptibility of hippocampal neurons to neurode-
generation during aging and in Alzheimer’s disease. There is however a
limitation to the applicability of the above hypothesis since the presumed
underlying mechanisms were predominantly identified in CA1 neurons.
This fact definitely does not allow ready extrapolation of the pharmaco-
logical data on high GC-induced neurodegeneration to the DG, CA3 and
CA2 regions, or to other brain regions affected in AD. Notably, in spite of
the corticosterone-induced increase of high-voltage-activated calcium
currents and the expression of the alpha1 subunit of the L-type calcium
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channel in principal neurons of the basolateral amygdala, corticosterone
failed to have any neurodegenarative effect in this area (Karst et al. 2002).

In this paragraph, it is important to mention an essential pre-receptor
mechanism that exists at high levels of GC-induced neurodegeneration.
The metabolism of GCs is controlled by tissue-specific enzymes such as
11ß-hydroxysteroid dehydrogenases (11ß-HSD). Importantly, this enzyme
has two isoforms: 11ß-HSD2 inactivates cortisol while 11ß-HSD1 is a 11ß-
reductase in vivo that acts in many tissues to increase local intracellular
glucocorticoid concentrations (Seckl et al. 2001). Since 11ß-HSD1 is pre-
dominantly expressed in the hippocampus (Moisan 1990), it may
enhance the GC-induced neurodegenerative actions in this region (Rajan
et al. 1996).

We have stated above that GCs are the most powerful endogenous
immunesupressors especially for the innate immune system. In fact, GCs
are potent inhibitors of the transcription of genes encoding proteins
involved in the innate immune system, such as nuclear factor κB (NFκB)
(McKay et al. 1999). Such immune control of GCs on the innate immune
system also exists in the CNS (Nadeau and Rivest 2003). Indeed, follow-
ing bacterial cell wall component lipopolysaccharide (LPS) administra-
tion, the transient elevation of GC concentrations plays a pivotal role in
controlling the microglial TNFα production (Nadeau and Rivest 2003).
Thus, a transiently elevated GC concentration prevents the brain from
the overproduction of neurotoxical TNFα resulting in an essential pro-
tection mechanism for neurons against immune challenge (Nadeau and
Rivest 2003).

Fine-tuned activation of GR at slightly elevated GC concentration also
induce the expression of a broad variety of substances with a neu-
rotrophic potential, such as lipocortin-1 (Flower et al. 1994), basic fibrob-
last growth factor (bFGF) and nerve growth factor (NGF) (Mochetti et al.
1996). In this regard, lipocortin-1 is known to inhibit the synthesis of
prostaglandins and leukotrienes by inhibiting phospholipase A2, the key
enzyme of the arachidonic acid cascade, and thereby precludes the sub-
sequent production of potentially cytotoxic oxygen radicals (Flower et al.
1994). In fact, lipocortin-1 acts as a neuroprotective agent against
ischemic insults and inhibits neuronal damage induced by infusion of
NMDA receptor agonists in the brain (Relton et al. 1991). Regarding
bFGF and NGF, in situ hybridization studies revealed that corticosterone
administration elicits the temporal induction of mRNA coding for both
neutrophic growth factors in the cerebral cortex (Mochetti et al. 1996).
Conversely, ADX leads to a decreased expression of neutrophins, which
may be directly associated with increased neuronal damage following
ischemic conditions or hypoglycemic stress (Barbany et al. 1992).
Importantly, immobilization stress which results in an overexposure to
GCs was reported to block NGF mRNA expression in the hippocampus
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(Ueyama et al. 1997), where most of the GC-induced damaging effects
occur. Taken together, these result may point to the fact that GCs in a nar-
row concentration window can activate protective factors such as
lipocortin-1, NGF and FGF, but overexposure or lack of GC production
may inhibit neutrophin expression and neutrophin linked-signal trans-
duction pathways.

In spite of the complex mechanism of action of GCs on neuronal cell
survival and viability, some overall final conclusions can be drawn based
on literature reports and our own experimental findings. GCs can acti-
vate both neurodegenerative as well as neuroprotective processes. Both
the lack or a high concentration of GC may initiate and/or work in con-
cert with endangering mechanisms in neurons, whereas physiological or
mildly elevated GC concentrations stimulate defensive molecular events
in the central nervous system.

5. SUMMARY

In the present review we provided a survey of evidence showing that
physiological levels of GC concentrations provide a balanced milieu for
neuronal maintenance while a slightly increased GC levels may even
induce neuroprotective processes. In contrast, the lack or high concen-
trations of GCs may shift this sensitive balance into the neurotoxic range.
Importantly, the set point of these concentration-dependent actions of
GCs may be different when viewed from the aspect of different brain
structures, distinct metabolic conditions or ageing. Although particular
cellular mechanisms of GC action are relatively well characterized, a com-
prehensive and integral understanding of the precise GC concentration-
dependent molecular mechanism should be elucidated in the future. As
such, further molecular biological studies must reveal how and when a
shift from the neuroprotective (physiological) to the neurotoxic effect in
the GCs’ balance range occurs.
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